Effect of Artificial Aging Test on PEEK CAD/CAM Fabricated Orthodontic Fixed Lingual Retainer
Main Article Content
Abstract
Background: The purpose of this study was to evaluate the effect of in vitro long-term simulation of oral conditions on the bond strength of PEEK CAD/CAM lingual retainers.
Material and methods: The sample consisted of 12 PEEK CAD/CAM retainers each composed of 2 centrally perforated 3x4mm pads joined by a connector. They were treated by 98% sulfuric acid for 1 minute and then conditioned with Single Bond Universal and bonded to the lingual surface of premolar teeth by 3M Transbond TM System. Half of the retainers were artificially aged using a 30-day water storage and 5000 thermocycling protocol before bond strength testing to compare with the non-aged specimens.
Results: The artificially aged retainers showed a marginally lower bond strength than the non-aged retainers. However, independent sample t-test indicated that this difference was statistically not significant.
Conclusion: The durability of the PEEK lingual retainer adhesive system has been confirmed using the well-known oral simulating artificial aging protocol of water storage and thermocycling.
Received date: 10-10-2021
Accepted date: 10-12-2021
Downloads
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licenses and Copyright
The following policy applies in The Journal of Baghdad College of Dentistry (JBCD):
# JBCD applies the Creative Commons Attribution (CC BY) license to articles and other works we publish. If you submit your paper for publication by JBCD, you agree to have the CC BY license applied to your work. Under this Open Access license, you as the author agree that anyone can reuse your article in whole or part for any purpose, for free, even for commercial purposes. Anyone may copy, distribute, or reuse the content as long as the author and original source are properly cited. This facilitates freedom in re-use and also ensures that JBCD content can be mined without barriers for the needs of research.
# If your manuscript contains content such as photos, images, figures, tables, audio files, videos, etc., that you or your co-authors do not own, we will require you to provide us with proof that the owner of that content (a) has given you written permission to use it, and (b) has approved of the CC BY license being applied to their content. We provide a form you can use to ask for and obtain permission from the owner. If you do not have owner permission, we will ask you to remove that content and/or replace it with other content that you own or have such permission to use.Don't assume that you can use any content you find on the Internet, or that the content is fair game just because it isn't clear who the owner is or what license applies.
# Many authors assume that if they previously published a paper through another publisher, they own the rights to that content and they can freely use that content in their paper, but that’s not necessarily the case, it depends on the license that covers the other paper. Some publishers allow free and unrestricted re-use of article content they own, such as under the CC BY license. Other publishers use licenses that allow re-use only if the same license is applied by the person or publisher re-using the content. If the paper was published under a CC BY license or another license that allows free and unrestricted use, you may use the content in your JBCD paper provided that you give proper attribution, as explained above.If the content was published under a more restrictive license, you must ascertain what rights you have under that license. At a minimum, review the license to make sure you can use the content. Contact that JBCD if you have any questions about the license. If the license does not permit you to use the content in a paper that will be covered by an unrestricted license, you must obtain written permission from the publisher to use the content in your JBCD paper. Please do not include any content in your JBCD paper which you do not have rights to use, and always give proper attribution.
# If any relevant accompanying data is submitted to repositories with stated licensing policies, the policies should not be more restrictive than CC BY.
# JBCD reserves the right to remove any photos, captures, images, figures, tables, illustrations, audio and video files, and the like, from any paper, whether before or after publication, if we have reason to believe that the content was included in your paper without permission from the owner of the content.
How to Cite
References
Proffit WR, Fields HW, Larson BE, et al. Contemporary orthodontics. 6th ed. Philadelphia: Elsevier; 2019.
Little RM, Riedel RA, Artun J. An evaluation of changes in mandibular anterior alignment from 10 to 20 years postretention. Am J Orthod Dentofacial Orthod. 1988; 93(5): 423–428.
Pratt MC, Kluemper GT, Hartsfield JK Jr, et al. Evaluation of retention protocols among members of the American Association of Orthodontists in the United States. Am J Orthod Dentofacial Orthop. 2011; 140(4): 520–526.
Kartal Y,Kaya B. Fixed Orthodontic Retainers: A Review. Turk J Orthod. 2019; 32(2):110-114.
Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci. 2014; 15: 5426-45.
Xiaolei Hu, Jingya Linga, Xiaomian Wu. The CAD/CAM method is more efficient and stable in fabricating of lingual retainer compared with the conventional method. Biomed J Sci & Tech Res 18(3)-2019.
Zreaqat M, Hassan R, Hanoun AF. A CAD/CAM Zirconium bar as a bonded mandibular fixed retainer: a novel approach with two-year follow-up. Case Rep Dent.2017 Jul 27;2017.
Kravitz ND, Grauer D, Schumacher P, et al. Memotain: a CAD/CAM nickel titanium lingual retainer. Am J Orthod Dentofac Orthop. 2017;151(4):812-5.
Zachrisson P. A new type of fixed retainer. Orthod Practice-US 2018, https://orthopracticeus.com/a-new-type-of-fixed-retainer.
Bathala L, Majeti V, Rachuri N, et al. The Role of Polyether Ether Ketone (PEEK) in Dentistry - A Review. J Med Life. 2019;12(1):5–9.
Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32): 4845–4869.
Ruwiaee RA, Alhuwaizi AF. Optimization of CAD/CAM fabricated PEEK orthodontic fixed lingual retainer adhesion to enamel. Int Med J 2021; 28, Suppl. 1: 69-73.
Ruwiaee RA, Alhuwaizi AF. Optimal design of PEEK CAD/CAM fabricated orthodontic fixed lingual retainer. Turk J Physiother Rehabil; 32(3): 13734- 43.
Kern M, Barloi A, Yang B. Surface conditioning influences zirconia ceramic bonding. J Dent Res 2009; 88:817–22.
Wegner SM, Gerdes W, Kern M. Effect of different artificial aging conditions on ceramic/composite bond strength. Int J Prosthodont. 2002;15:(3).
Stawarczyk B, Jordan P, Schmidlin PR, et al. PEEK surface treatment effects on tensile bond strength to veneering resins. J Prosthet Dent. 2014;112(5):1278-88.
Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent. 1999;27(2):89–99.
Younis M, Unkovskiy A, ElAyouti A, et al. The effect of various plasma gases on the shear bond strength between unfilled polyetheretherketone (PEEK) and veneering composite following artificial aging. Materials (Basel). 2019; 12(9): 1447.
Faltermeier A, Rosentritt M, Faltermeier R, et al. Influence of filler level on the bond strength of orthodontic adhesives. Angle Orthod 2007; 77:494e8.
Çulhaoğlu AK, Özkır SE, Şahin V, et al. Effect of various treatment modalities on surface characteristics and shear bond strengths of polyetheretherketone-based core materials. J Prosthodont. 2017;39:1–6.
Stawarczyk B, Bähr N, Beuer F, et al. Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone. Clin Oral Invest 2013;18:163–70.
De Munck J, Mine A, Poitevin A, et al. Metaanalytic review of parameters involved in dentin bonding. J Dent Res. 2012; 91:351-357.
Bähr N, Keul C, Edelhoff D, et al. Effect of different adhesives combined with two resin composite cements on shear bond strength to polymeric CAD/CAM materials. Dent Mater J 2013; 32: 492–501
Khalil SK, Allam MA, Tawfik WA. Use of FT-Raman spectroscopy to determine the degree of polymerization of dental composite resin cured with a new light source. Eur J Dent. 2007; 1: 72-79.
Caglar I, Ates SM, Duymus ZY. An in vitro evaluation of the effect of various adhesives and surface treatments on bond strength of resin cement to polyetheretherketone. J Prosthodont. 2018;28(1):e342–e349.