Molar tubes and failure rates–A review

Main Article Content

Nawar M Hasan
https://orcid.org/0000-0003-1945-6078
Yassir A Yassir
https://orcid.org/0000-0001-9577-8947
Grant T McIntyre
https://orcid.org/0000-0002-7224-4739

Abstract

Objectives: To review the failure rates of molar tubes and the effect of molar tube base design, adhesive type, and bonding technique on the failure rates of molar tubes. Data: The revolution of molar bonding greatly impacted fixed orthodontic appliance treatment by reducing chair-side time and improving patient comfort. Even with the many advantages of molar bonding, clinicians sometimes hesitate to use molar tubes due to their failure rates. Sources: Internet sources, such as Pubmed and Google Scholar. Study selection: studies testing the bond failure rate of molar tubes. Conclusions: The failure rate of the molar tubes can be reduced and the bond strength of the molar tubes can be improved by changing the design of the molar tube base, the adhesive type, and the bonding technique

Downloads

Download data is not yet available.

Article Details

Section

Review Articles

Author Biographies

Nawar M Hasan , Department of Orthodontics, College of Dentistry, University of Baghdad, Iraq.

Department of Orthodontics, College of Dentistry, University of Baghdad, Iraq.

Yassir A Yassir , Department of Orthodontics, College of Dentistry, University of Baghdad, Iraq.

Department of Orthodontics, College of Dentistry, University of Baghdad, Iraq.

Grant T McIntyre , Honorary professor of Orthodontics, School of Dentistry, University of Dundee, UK.

Honorary professor of Orthodontics, School of Dentistry, University of Dundee, UK.

How to Cite

1.
Hasan NM, Yassir YA, McIntyre GT. Molar tubes and failure rates–A review. J Bagh Coll Dent [Internet]. 2023 Jun. 15 [cited 2024 Dec. 22];35(2):76-84. Available from: https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/3407

References

Al-Zubaidi, HJ., Alhuwaizi, AF. Molar buccal tubes front and back openings dimensions and torsional play. J Bagh Coll Dent. 2018; 30(3): 32-39.

Singh, G. Textbook of Orthodontics. Second ed., Jaypee Brothers Medical Publishers, New Delhi, 2007.

GH Orthodontics Product Catalog (2020). Printed in USA.

Ortho Technology Product Catalog (2021). Printed in USA.

Zachrisson, BJ. A posttreatment evaluation of direct bonding in orthodontics. Am J Orthod. 1977; 71(2): 173-189.

Banks, P., Macfarlane, TV. Bonded versus banded first molar attachments: a randomized controlled clinical trial. J Orthod. 2007; 34(2): 128-136; discussion 111-2.

Flores-Mir, C. Bonded molar tubes associated with higher failure rate than molar bands. Evid Based Dent. 2011; 12(3): 84.

Oeiras, VJ., Silva, VA., Azevedo, LA., Lobato, VS., Normando, D. Survival analysis of banding and bonding molar tubes in adult patients over a 12-month period: a split-mouth randomized clinical trial. Braz Oral Res. 2016; 30(1): e136.

Beemer, RL., Ferracane, JL., Howard, HE. Orthodontic band retention on primary molar stainless steel crowns. Pediatr Dent. 1993; 15(6): 408-413.

Gupta, R., Mahanta, S. Assessment of failure rates between cemented molar bands and bondable molar tubes during the complete orthodontic treatment. J Nepal Dent. Assoc. 2018; 18(1): 13-16.

Paschos, E., Kurochkina, N., Huth, KC., Hansson, CS., Rudzki-Janson, I. Failure rate of brackets bonded with antimicrobial and fluoride-releasing, self-etching primer and the effect on prevention of enamel demineralization. Am J Orthod Dentofacial Orthop. 2009; 135(5): 613-620.

Nascimento, AÉVE., Bramante, FS., Pinzan-Vercelino, CR., Pinzan, A., Gurgel, JA. Resin reinforcement: an alternative ap-proach for direct bonding of molar tubes. J Clin Orthod. 2014; 48(7): 436-440.

Zachrisson, BU. Cause and prevention of injuries to teeth and supporting structures during orthodontic treatment. Am J Or-thod. 1976; 69(3): 285-300.

Boyd, RL., Baumrind, S. Periodontal considerations in the use of bonds or bands on molars in adolescents and adults. Angle Orthod. 1992; 62(2): 117-126.

Pinzan-Vercelino, CR., Pinzan, A., Gurgel, JA., Bramante, FS., Pinzan, LM. In-vitro evaluation of an alternative method to bond molar tubes. J Appl Oral Sci. 2011; 19(1): 41-46.

Corbacho de Melo, MM., Cardoso, MG., Faber, J., Sobral, A. Risk factors for periodontal changes in adult patients with banded second molars during orthodontic treatment. Angle Orthod. 2012; 82(2): 224-228.

Jardim, AFV., Azevedo, MN., Souza, JB., Freitas, JC, Estrela, C. Evaluation of bond strength of molar orthodontic tubes sub-jected to reinforcement with flowable and bonding resins. J Orofac Orthop. 2020; 81(5): 350-359.

Millett, DT., Hallgren, A., Cattanach, D., McFadzean, R., Pattison, J., Robertson, M., et al. A 5-year clinical review of bond failure with a light-cured resin adhesive. Angle Orthod. 1998; 68(4): 351-356.

Nazir, M., Walsh, T., Mandall, NA., Matthew, S., Fox, D. Banding versus bonding of first permanent molars: a multi-centre randomized controlled trial. J Orthod. 2011; 38(2): 81-89.

Abbing, A., Koretsi, V., Eliades, T., Papageorgiou, SN. Duration of orthodontic treatment with fixed appliances in adolescents and adults: a systematic review with meta-analysis. Prog Orthod. 2020; 21(1): 37.

Al-Attar, AM., Al-Shaham, S., Abid, M. Perception of Iraqi Orthodontists and Patients toward Accelerated Orthodontics. Int J Dent. 2021; 2021:5512455.

Artun, J., Brobakken, BO. Prevalence of carious white spots after orthodontic treatment with multi-bonded appliances. Eur J Orthod. 1986; 8(4): 229-234.

Al-Musallam, TA., Evans, CA., Drummond, JL., Matasa, C., Wu, CD. Anti-microbial properties of an orthodontic adhesive combined with cetylpyridinium chloride. Am J Orthod Dentofacial Orthop. 2006; 129(2): 245-251.

Hailan, SY., Al-Khatieeb, MM. The effects of incorporating some additives on shear bond strength of orthodontic adhesive (an in-vitro study). Int J Med Res Health Sci. 2018; 7(11): 11-18.

Gillgrass, TJ., Benington, PC., Millett, DT., Newell, J., Gilmour, WH. Modified composite or conventional glass ionomer for band cementation? A comparative clinical trial. Am J Orthod Dentofacial Orthop. 2001; 120(1): 49-53.

Clark, JR., Ireland, AJ., Sherriff, M. An in-vivo and ex-vivo study to evaluate the use of a glass polyphosphonate cement in orthodontic banding. Eur J Orthod. 2003; 25(3): 319-323.

Geiger, AM., Gorelick, J., Gwinnett, AJ. Bond failure rates of facial and lingual attachments. J Clin Orthod. 1983; 17(3): 165-169.

Knoll, M., Gwinnett, AJ., Wolff, MS. Shear strength of brackets bonded to anterior and posterior teeth. Am J Orthod. 1986; 89(6): 476-479.

Millett, DT., Letters, S., Roger, E., Cummings, A., Love, J. Bonded molar tubes - an in-vitro evaluation. Angle Orthod. 2001; 71(5): 380-385.

Evans, LB., Powers, JM. Factors affecting in-vitro bond strength of no-mix orthodontic cements. Am J Orthod. 1985; 87(6): 508-512.

Johnston, CD., Hussey, DL., Burden, DJ. The effect of etch duration on the microstructure of molar enamel: an in-vitro study. Am J Orthod Dentofacial Orthop. 1996; 109(5): 531-534.

Mattick, CR., Hobson, RS. A comparative micro-topographic study of the buccal enamel of different tooth types. J Orthod. 2000; 27(2): 143-148.

Millett, DT., Cattanach, D., McFadzean, R., Pattison, J., McColl, J. Laboratory evaluation of a compomer and a resin-modified glass ionomer cement for orthodontic bonding. Angle Orthod. 1999; 69(1): 58-63.

Pandis, N., Christensen, L., Eliades, T. Long-term clinical failure rate of molar tubes bonded with a self-etching primer. Angle Orthod. 2005; 75(6): 1000-1002.

Jung, MH. Survival analysis of brackets and tubes: A twelve-month assessment. Angle Orthod. 2014; 84(6): 1034-1040.

Cucu, M., Driessen, CH., Ferreira, PD. The influence of orthodontic bracket base diameter and mesh size on bond strength. S Afr Dent J. 2002; 57(1): 16-20.

Wang, WN., Li, CH., Chou, TH., Wang, DD., Lin, LH., Lin, CT. Bond strength of various bracket base designs. Am J Orthod Dentofacial Orthop. 2004; 125(1): 65-70.

Cozza, P., Martucci, L., De Toffol, L., Penco, SI. Shear bond strength of metal brackets on enamel. Angle Orthod. 2006; 76(5): 851-856.

Thapa, VB., Shrestha, A., Sherchan, P., Poudel, P., Joshi, L. Comparison of shear bond strength of two commercially available bondable molar tubes. Orthod J Nepal. 2019; 9(1): 11-14.

Sorel, O., El-Alam, R., Chagneau, F., Cathelineau, G. Comparison of bond strength between simple foil mesh and la-ser-structured base retention brackets. Am J Orthod Dentofacial Orthop. 2002; 122(3): 260-266.

MacColl, GA., Rossouw, PE., Titley, KC., Yamin, C. The relationship between bond strength and orthodontic bracket base surface area with conventional and microetched foil-mesh bases. Am J Orthod Dentofacial Orthop. 1998; 113(3): 276-281.

Talpur, M., Cunningham, SJ., Moles, DR., Jones, SP. The relationship between base dimensions, force to failure, and shear bond strengths of bondable molar tubes. Angle Orthod. 2012; 82(3): 536-540.

Meng, CL., Li, CH., Wang, WN. Bond strength with APF applied after acid etching. Am J Orthod Dentofacial Orthop 1998; 114: 510-513.

Sorel, O., El-Alam, R., Chagneau, F., Cathelineau, G. Changes in the enamel after in-vitro debonding of brackets bonded with a modified glass ionomer cement. Orthod Fr. 2000; 71: 155-163.

Hasan, GM., Al-Dabagh, DJN. Assessment of enamel surface after debonding of different types of esthetic brackets (an in-vitro study). J Bagh Coll Dent. 2016; 28(4): 162-167.

Millett, DT., Mandall, NA., Mattick, RC., Hickman, J., Glenny, AM. Adhesives for bonded molar tubes during fixed brace treatment. Cochrane Database Syst Rev. 2017; 2(2): CD008236.

Norevall, LI., Marcusson, A., Persson, M. A clinical evaluation of a glass ionomer cement as an orthodontic bonding adhesive compared with an acrylic resin. Eur J Orthod. 1996; 18(4): 373-384.

Mandall, N.A., Millett, D.T., Mattick, C.R., Hickman, J., Worthington, H.V., Macfarlane, T.V. Orthodontic adhesives: a sys-tematic review. J Orthod. 2002; 29(3): 205-210.

Mandall, NA., Millett, DT., Mattick, CR., Hickman, J., Macfarlane, T.V., Worthington, H.V. Adhesives for fixed orthodontic brackets. Cochrane Database Syst Rev. 2018; 4(4): CD002282.

Millett, DT., McCluskey, LA., McAuley, F., Creanor, SL., Newell, J., Love, J. A comparative clinical trial of a compomer and a resin adhesive for orthodontic bonding. Angle Orthod. 2000; 70(3): 233-240.

Aljubouri, YD., Millett, DT., Gilmour, WH. Six and 12 months' evaluation of a self-etching primer versus two-stage etch and prime for orthodontic bonding: a randomized clinical trial. Eur J Orthod. 2004; 26(6): 565-571.

Banks, P., Thiruvenkatachari, B. Long-term clinical evaluation of bracket failure with a self-etching primer: a randomized controlled trial. J Orthod. 2007; 34(4): 243-251.

Tanbakuchi, B., Hooshmand, T., Javad Kharazifard, M., Shekofteh, K., Hesam Arefi, A. Shear bond strength of molar tubes to enamel using an orthodontic resin-modified glass ionomer cement modified with amorphous calcium phosphate. Front Dent. 2019; 16(5): 369-378.

Griffin, J., Ruddy, M., Mavreas, D., Nace, S., Vande Vannet, B., Stanton, K.T. Comparison of shear bond strength and ARI of four different adhesive systems used to bond molar tubes: An in-vitro study. Int Orthod. 2021; 19(1): 117-122.

Johnston, CD., McSherry, PF. The effects of sandblasting on the bond strength of molar attachments - an in-vitro study. Eur J Orthod. 1999; 21(3): 311-317.

Abu-Alhaija, E., Jaradat, M., Alwahadni, A. An Ex-vivo Shear and tensile bond strengths of orthodontic molar tubes bonded using different techniques. J Clin Exp Dent. 2017; 9(3): e448-e453.

Ganiger, C., Agarwal, N., Pawar, R., Phaphe, S., Ahammed, Y., Mane, P., et al. To evaluate the shear bond strength of bondable molar tubes by two enamel conditioning techniques. J Evolution Med Dent Sci. 2020; 9(35), 2507-2510.

Similar Articles

You may also start an advanced similarity search for this article.