Effects of vitamin D deficiency on bone and root resorption post-orthodontic retention in rats

Main Article Content

Asmaa M Khamees
https://orcid.org/0000-0001-7120-8720
Dheaa H Al Groosh
https://orcid.org/0000-0003-0052-7286
Natheer H Al-Rawi
https://orcid.org/0000-0002-7483-6594

Abstract

Background: Orthodontic therapy often causes external root resorption. Serum vitamin D (VD) level is important for tooth mineralization and bone remodeling. This study aimed to test the impact of vitamin D (VD) supplements on bone and root remodelling in a vitamin D (VD) deficient rat model following orthodontic retention. Methods and Material: 30 male Wistar rats were divided into three groups: a control group of 10 rats and two experimental groups of 10 rats each with vitamin D deficiency (VDD) induced by a VD-free diet for 21 days. And a third group with VD supplementAll groups received orthodontic active treatment using a modified orthodontic appliance that applied 50 gm of force for 14 days to move the maxillary right first molar mesially, followed by 7 days of retention and relapse. The VDD group received no intervention, while the VDS group received 40,000 IU/kg of systemic VD3 by intramuscular injection on the first and fifteenth day of orthodontic treatment. Histomorphometric analysis was performed to assess bone and cementum resorption and deposition. Results: The VDD group exhibited a significant increase in bone and root resorption and a decrease in bone deposition and ce-mentum deposition ratio. In addition, bone deposition and the ratio of cementum deposition were substantially greater in the VDS group compared to the control group. Conclusion: VDD may increase bone and root cementum resorption and decrease deposition after orthodontic retention, which may play a significant role in relapse after retention. Prior to beginning orthodontic treatment, routine VD screening may be beneficial.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Khamees AM, Al Groosh DH, Al-Rawi NH. Effects of vitamin D deficiency on bone and root resorption post-orthodontic retention in rats. J Bagh Coll Dent [Internet]. 2023 Jun. 15 [cited 2024 May 2];35(2):54-6. Available from: https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/3403
Section
Research Articles
Author Biographies

Asmaa M Khamees, Department of Orthodontic, College of Dentistry, University of Baghdad, Iraq.

Department of Orthodontic, College of Dentistry, University of Baghdad, Iraq.

Dheaa H Al Groosh, Department of Orthodontics, College of Dentistry, University of Baghdad, Iraq.

Department of Orthodontics, College of Dentistry, University of Baghdad, Iraq.

Natheer H Al-Rawi, Department of Oral and Craniofacial Health Sciences, University of Sharjah, UAE

Department of Oral and Craniofacial Health Sciences, University of Sharjah, UAE

How to Cite

1.
Khamees AM, Al Groosh DH, Al-Rawi NH. Effects of vitamin D deficiency on bone and root resorption post-orthodontic retention in rats. J Bagh Coll Dent [Internet]. 2023 Jun. 15 [cited 2024 May 2];35(2):54-6. Available from: https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/3403

Publication Dates

References

Andreasen JO, Andreasen FM. Textbook and color atlas of traumatic injuries to the teeth, 3rd edn. Munksgaard Publishers, Copenhagen.1993. DOI:10.25241

Chan EK, Darendeliler MA. Exploring the third dimension in root resorption. Orthod Craniofac Res. 2004; 7:64-70. DOI: https://doi.org/10.1111/j.1601-6343.2004.00280.x

Zahrowski J, Jeske A. Apical root resorption is associated with comprehensive orthodontic treatment but not clearly de-pendent on prior tooth characteristics or orthodontic techniques. J Am Dent Assoc. 2011; 142:66-8. 5. DOI: https://doi.org/10.14219/jada.archive.2011.0030

Rathe F, Nolken R, Deimling D, Ratka-Kr¨uger P. Externe wurzelresorption [external root resorption]. Schweizerische Monatsschrift fur Zahnmedizin. 2006; 116 (3): 245–253.

Andreasen JO, Andreasen FM. Essentials of Traumatic Injuries to the Teeth: A Step-by-step Treatment Guide, John Wiley and Sons, Hoboken, NJ, USA, 2010.

Lopatiene K, Dumbravaite A. Risk factors of root resorption after orthodontic treatment. Stomatologija. 2008; 10:89-95.

Jung YH, Cho BH. External root resorption after orthodontic treatment: a study of contributing factors. ISD. 2011; 41(1): 17. DOI: https://doi.org/10.5624/isd.2011.41.1.17

Fanari Z, Hammami S, Hammami MB, Hammami S, Abdellatif A. Vitamin D deficiency plays an important role in cardiac disease and affects patient outcome: Still a myth or a fact that needs exploration? JSHA. 2015; 27(4): 264–271. DOI: https://doi.org/10.1016/j.jsha.2015.02.003

Hatun Ş, Ozkan B, Bereket A. Vitamin D deficiency and prevention: Turkish experience. Acta Paediatrica. 2011; 100(9): 1195–1199. DOI: https://doi.org/10.1111/j.1651-2227.2011.02383.x

Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. JCEM. 2016; 101(2): 394–415. DOI: https://doi.org/10.1210/jc.2015-2175

Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolution. Bone Key Reports. 2014; 3, 480. DOI: https://doi.org/10.1038/bonekey.2013.214

Fontana ML, de Souza CM, Bernardino JF, Hoette F, Hoette ML, Thum L, et al., Association analysis of clinical aspects and vitamin D receptor gene polymorphism with external apical root re sorption in orthodontic patients.AJO-DO. 2012; 142(3): 339–347. DOI: https://doi.org/10.1016/j.ajodo.2012.04.013

Al-Attar A, Abid M. Effect of vitamin D3 on the alignment of mandibular anterior teeth: a randomized controlled clinical trial,” International J Dent. 2022; 6555883 (11): 2022. DOI: https://doi.org/10.1155/2022/6555883

Jäger A, Kunert D, Friesen T, Zhang D, Lossdörfer S, Götz W. Cellular and extracellular factors in early root resorption repair in the rat. Eur J Orthod. 2008; (30): 336–345. DOI: https://doi.org/10.1093/ejo/cjn012

Brudvik P, Rygh P. The repair of orthodontic root resorption: an ultrastructural study, Eur J Orthod. 1995;17, (3): 189–198. DOI: https://doi.org/10.1093/ejo/17.3.189

Bosshardt DD, Zalzal S, Mckee MD, Nanci A. Developmental appearance and distribution of bone sialoprotein and oste-opontin in human and rat cementum. Anatomical Record. 1998; 250(1):13–33. DOI: https://doi.org/10.1002/(SICI)1097-0185(199801)250:1<13::AID-AR3>3.0.CO;2-F

Turkkahraman H, Yuan X, Salmon B, Chen CH, Brunski JB, Helms JA. Root resorption and ensuing cementum repair by Wnt/β-catenin dependent mechanism. AJO-DO. 2019. DOI: https://doi.org/10.1016/j.ajodo.2019.06.021

Al-Harbi NO, Nadeem A, Al-Harbi MM, Zoheir KMA, Ansari MA, El-Sherbeeny AM, et al Psoriatic inflammation causes hepatic inflammation with concomitant dysregulation in hepatic metabolism via IL-17A/IL-17 receptor signaling in a mu-rine model. Immunobiology. 2017; 222(2): 128–136. DOI: https://doi.org/10.1016/j.imbio.2016.10.013

Hokugo A, Christensen R, Chung EM, Sung EC, Felsenfeld AL, Sayre JW, et al. Increased prevalence of bisphospho-nate-related osteonecrosis of the jaw with vitamin D deficiency in rats. JBMR. 2010; 25(6): 1337–1349. DOI: https://doi.org/10.1002/jbmr.23

Stavenuiter AWD, Arcidiacono MV, Ferrantelli E, Keuning ED, Vila Cuenca M, ter Wee PM, et al. A Novel Rat Model of Vitamin D Deficiency: Safe and Rapid Induction of Vitamin D and Calcitriol Deficiency without Hyperparathyroidism. BioMed Research International. 2015; 1–5. DOI: https://doi.org/10.1155/2015/604275

Alnajar HAAM, Al Groosh DH. The effects of calcitonin on post‐orthodontic relapse in rats. Clinical and Experimental Dental Research. 2020; 7(3): 293–301. DOI: https://doi.org/10.1002/cre2.373

Franzen TJ, Brudvik P, Vandevska-Radunovic V. Periodontal tissue reaction during orthodontic relapse in rat molars. Eur J Orthod. 2011; 35(2): 152–159. DOI: https://doi.org/10.1093/ejo/cjr127

Yadav S, Assefnia A, Gupta H, Vishwanath M, Kalajzic Z, Allareddy V, et al. The effect of low-frequency mechanical vi-bration on retention in an orthodontic relapse model. Eur J Orthod. 2015; 38(1): 44–50. DOI: https://doi.org/10.1093/ejo/cjv006

Verna C, Dalstra M, Melsen B. The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod. 2000; 22(4): 343–352. DOI: https://doi.org/10.1093/ejo/22.4.343

Derakhshanian H, Javanbakht MH, Zarei M, Djalali E, Djalali M. Vitamin D increases IGF-I and insulin levels in experi-mental diabetic rats. Growth Hormone & IGF Research. 2017; 36, 57–59. DOI: https://doi.org/10.1016/j.ghir.2017.09.002

Li X, Li M, Lu J, Hu Y, Cui L, Zhang D, et al. Age-related effects on osteoclastic activities after orthodontic tooth movement. Bone & Joint Research. 2016; 5(10):492-499. DOI: https://doi.org/10.1302/2046-3758.510.BJR-2016-0004.R2

Plut A, Sprogar Š, Drevenšek G, Hudoklin S, Zupan J, Marc J, et al. Bone remodeling during orthodontic tooth movement in rats with type 2 diabetes. AJO-DO. 2015; 148(6), 1017–1025. DOI: https://doi.org/10.1016/j.ajodo.2015.05.031

Al-Duliamy MJ. Enhancement of Orthodontic Anchorage and Retention by Local Injection of Strontium: An Experimental Study in Rats. Master Thesis, College of Dentistry, Baghdad University, Iraq. 2011.

González-Chávez SA, Pacheco-Tena C, Macías-Vázquez CE, Luévano- Flores E. Assessment of different decalcifying protocols on Osteopontin and Osteocalcin immunostaining in whole bone specimens of arthritis rat model by confocal immunofluorescence. Int J Clin Exp Pathol. 2013; 6(10): 1972–1983.

Hudson JB, Hatch N, Hayami T, Shin JM, Stolina M, Kostenuik PJ, et al. Local Delivery of Recombinant Osteoprotegerin Enhances Postorthodontic Tooth Stability. Calcified Tissue International. 2012; 90(4), 330–342. DOI: https://doi.org/10.1007/s00223-012-9579-4

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature methods. 2012; 9, 671-675. DOI: https://doi.org/10.1038/nmeth.2089

Razouki NA, Ghani BA. Histological Evaluation of Effect of beta-Tricalcium Phosphate on Bone healing in Allox-an-Induced diabetes. JBCD. 2016; (325): 1-7.

33. Mehta SA, Deshmukh SV, Sable RB, Patil AS. Comparison of 4 and 6 weeks of rest period for repair of root resorption. Prog Orthod. 2017 Dec;18:1-8 DOI: https://doi.org/10.1186/s40510-017-0173-1

Al-Daghri NM. Vitamin D in Saudi Arabia: prevalence, distribution, and disease associations. J Steroid Biochem Mol Biol. 2018; (175):102–107. DOI: https://doi.org/10.1016/j.jsbmb.2016.12.017

Hantoosh HA, Mahdi MH, Imran BW, Yahya AA. Prevalence of vitamin D deficiency in Iraqi female at reproductive age. Med J Babylon 2019;16:119-22. DOI: https://doi.org/10.4103/MJBL.MJBL_9_19

Proffit WR, Fields HW, Larson B, Sarver DM. Contemporary Orthodontics, (6th ed.) St. Louis: Mosby. 2019.

Yu Y, Sun J, Lai W, Wu T, Koshy S, Shi Z. Interventions for managing relapse of the lower front teeth after orthodontic treatment. Cochrane Database of Systematic Reviews. 2010, Issue 10.

Qi J, Kitaura H, Shen WR, Kishikawa A, Ogawa S, Ohori F, et al. Establishment of an orthodontic retention mouse model and the effect of anti-c-Fms antibody on orthodontic relapse. PLOS ONE. 2019; 14(6): e0214260. DOI: https://doi.org/10.1371/journal.pone.0214260

Maleeh I, Robinson J, Wadhwa S. Role of Alveolar Bone in Mediating Orthodontic Tooth Movement and Relapse. Biology of Orthodontic Tooth Movement. 2016: 1–12. DOI: https://doi.org/10.1007/978-3-319-26609-1_1

Kale S, Kocadereli İ, Atilla P, Aşan E. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. AJO- DO. 2004; 125(5): 607–614. DOI: https://doi.org/10.1016/j.ajodo.2003.06.002

Vieira GM, Falcao DP, Fernandes de Queiroz SB. A novel analysis via micro-CT imaging indicates that chemically modi-fied tetracycline-3 (CMT-3) inhibits tooth relapse after orthodontic movement: a pilot experimental study. Int J Dent. 2019. DOI: https://doi.org/10.1155/2019/3524207

Azami N, Chen PJ, Mehta S, Kalajzic Z, Dutra EH, Nanda R, et al. Raloxifene administration enhances retention in an or-thodontic relapse model. Eur J Oral of Orthodontics. 2020; DOI: https://doi.org/10.1093/ejo/cjaa008

Arqub SA, Gandhi V, Iverson MG, Ahmed M, Kuo CL, Mu J, et al. The effect of the local administration of biological sub-stances on the rate of orthodontic tooth movement: a systematic review of human studies. Progress in Orthodontics. 2021; 22(1). DOI: https://doi.org/10.1186/s40510-021-00349-5

Atkins GJ, Anderson PH, Findlay DM, Welldon KJ, Vincent C, Zannettino ACW, et al. Metabolism of vitamin D3 in human osteoblasts: Evidence for autocrine and paracrine activities of 1α,25-dihydroxyvitamin D3. Bone. 2007; 40(6): 1517–1528. DOI: https://doi.org/10.1016/j.bone.2007.02.024

Lutter AH, HempelU, Anderer U, Dieter P. Biphasic influence of PGE2 on the resorption activity of osteoclast-like cells derived from human peripheral blood monocytes and mouse RAW264.7 cells. PLEFA. 2016; (111): 1–7. DOI: https://doi.org/10.1016/j.plefa.2016.03.017

Shevde NK, Plum LA, Clagett-Dame M, Yamamoto H, Pike JW, DeLuca HF. A potent analog of 1 ,25-dihydroxyvitamin D3 selectively induces bone formation. PNAS. 2002; 99(21): 13487–13491. DOI: https://doi.org/10.1073/pnas.202471299

Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. JBM. 2004; 22(6): 541–546. DOI: https://doi.org/10.1007/s00774-004-0521-3

Stein SH, Tipton DA. Vitamin D and its impact on oral health – An update. J Tenn Dent Assoc. 2011; (91):30-3.

Anand N, Chandrasekaran SC, Rajput NS. Vitamin D and periodontal health: Current concepts. J Indian Soc Periodontol. 2013; (17):302-8. DOI: https://doi.org/10.4103/0972-124X.115645

Bastos Jdo A, Andrade LC, Ferreira AP, Barroso Ede A, Daibert Pde C, Barreto PL, et al. Serum levels of Vitamin D and chronic periodontitis in patients with chronic kidney disease. J Bras Nefrol. 2013; (35):20-6. DOI: https://doi.org/10.5935/01012800.20130004

Sabuncuoglu FA, Esenlik E. Influence of drugs on orthodontic tooth movement. Pakistan Oral & Dental J. 2010; 30(2):1126–1129.

Seifi M, Ravadgar M, Eslami B. Effect of acetaminophen, aspirin, and ibuprofen on the rate of orthodontic tooth movement and root resorption in rabbits. J of Dental School. 2004; (21):689–700.

Seifi M, Hamedi R, Naziri M. The synergistic effect of Vitamine D and Prostaglandin E2 on orthodontic tooth movement in rats. Iran J Orthod. 2013; (8):1-5.

Booij-Vrieling HE, Ferbus D, Tryfonidou MA, Riemers FM, Penning LC, Berdal A, et al. Increased Vitamin D-driven sig-nalling and expression of the Vitamin D receptor, MSX2, and RANKL in tooth resorption in cats. Eur J Oral Sci. 2010;(118):39-46. DOI: https://doi.org/10.1111/j.1600-0722.2009.00707.x

Tehranchi A, Younessian F, Sadighnia A, Abdi AH, Shirvani A. Correlation of Vitamin D status and orthodontic-induced external apical root resorption. D R J. 2017;14(6):403–411. DOI: https://doi.org/10.4103/1735-3327.218565

Zhang D, Yang YQ, Li XT, Fu MK. expression of osteoprotegerin and the receptor activator of nuclear factor kappa B lig-and in human periodontal ligament cells cultured with and without 1α, 25-dihydroxyvitamin D3,” Archives of Oral Biol. 2004;49(1):71–76. DOI: https://doi.org/10.1016/S0003-9969(03)00201-2

Similar Articles

You may also start an advanced similarity search for this article.