Investigating the impact of non-nutritive sweeteners on the antifungal potential of alcoholic and aqueous Eucalyptus extracts against salivary candida albicans (An in-vitro study)

Main Article Content

Dalya M. AL-Qaralusi
https://orcid.org/0000-0003-0572-3489
Abbas S Al-Mizraqchi
https://orcid.org/0000-0001-9787-5708

Abstract

Background: Eucalyptus extracts and derivatives are natural substances with potent antimicrobial properties. This study investigated the in- vitro effects of non-nutritive sweeteners on the antifungal activity of alcoholic and aqueous Eucalyptus extracts against Candida albicans, a common oral pathogen. Materials and Method: Ten isolates of Candida albicans were isolated from dental students’ salivary samples. The alcoholic and aqueous extracts were prepared from fresh Eucalyptus leaves using maceration. The sensitivity of Candida albicans isolates to various concentrations of Eucalyptus extracts ranging from 50 to 250 (mg/mL) was evaluated via agar well diffusion method, while the agar streaking method  was used to assess the minimum fungicidal concentration (MFC). In addition, the effect of non-nutritive sweeteners on the MFC of the extracts was investigated. Results: The Eucalyptus extract-sensitive Candida albicans isolates showed an increase in inhibitory zone width with increasing extract concentration. Regarding their antifungal effectiveness, clear disparities were observed among extract concentrations. Against Candida albicans, the MFC for Eucalyptus alcoholic extract was 75 mg/mL, but the MFC for Eucalyptus aqueous extract was 200 mg/mL. Notably, 15% stevia and 5% sucralose did not affect the antifungal effects of the Eucalyptus alcoholic extract. The antifungal effectiveness of the aqueous Eucalyptus extract against Candida albicans was unaffected by stevia and sucralose concentrations of up to 1%. Conclusion: Significant antimicrobial action against Candida albicans is shown in Eucalyptus extracts. Results indicated that stevia and sucralose at specific quantities could be utilized as sweeteners for Eucalyptus extracts in an efficient manner without impairing the extracts’ antifungal activity.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
AL-Qaralusi DM, Al-Mizraqchi AS. Investigating the impact of non-nutritive sweeteners on the antifungal potential of alcoholic and aqueous Eucalyptus extracts against salivary candida albicans (An in-vitro study) . J Bagh Coll Dent [Internet]. 2023 Sep. 15 [cited 2024 Dec. 19];35(3):1-9. Available from: https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/3446
Section
Research Articles
Author Biographies

Dalya M. AL-Qaralusi , Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq

Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq

Abbas S Al-Mizraqchi , Medical Microbiology, Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq

Medical Microbiology, Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq

How to Cite

1.
AL-Qaralusi DM, Al-Mizraqchi AS. Investigating the impact of non-nutritive sweeteners on the antifungal potential of alcoholic and aqueous Eucalyptus extracts against salivary candida albicans (An in-vitro study) . J Bagh Coll Dent [Internet]. 2023 Sep. 15 [cited 2024 Dec. 19];35(3):1-9. Available from: https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/3446

Publication Dates

References

Chandorkar N., Tambe S., Amin P., Madankar C. A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus eucalyptus. Phytomed Plus.2021:1(4): 100089. DOI: https://doi.org/10.1016/j.phyplu.2021.100089

Aleksic Sabo V, Knezevic P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind Crops Prod. 2019; 132: 413-429. DOI: https://doi.org/10.1016/j.indcrop.2019.02.051

Khoshnazar M., Parvardeh S., Bigdeli M. Alpha-pinene exerts neuroprotective effects via anti-inflammatory and anti-apoptotic mechanisms in a rat model of focal cerebral ischemia-reperfusion. Journal of Stroke and Cerebrovascular Diseases.2020;29(8): 104977. DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104977

Juergens L, Worth H, Juergens U. New Perspectives for Mucolytic, Anti-inflammatory and Adjunctive Therapy with 1,8-Cineole in COPD and Asthma: Review on the New Therapeutic Approach. Adv Ther. 2020;37(5): 1737-1753. DOI: https://doi.org/10.1007/s12325-020-01279-0

Nichol AD, Holle MJ, An R. Glycemic impact of non-nutritive sweeteners: A systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr.2018; 72(6): 796–804. DOI: https://doi.org/10.1038/s41430-018-0170-6

Gardana C, Simonetti P. Determination of steviol glycosides in commercial extracts of stevia rebaudiana and sweeteners by ultra-high performance liquid chromatography orbitrap mass spectrometry. J Chromatogr A. 2018; 1578: 8–14. DOI: https://doi.org/10.1016/j.chroma.2018.09.057

Ahmad J, Khan I, Blundell R, Azzopardi J, Mahomoodally M. Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends Food Sci Technol..2020;100,177-189. DOI: https://doi.org/10.1016/j.tifs.2020.04.030

Schiffman SS, Nagle HT. Revisited: Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem Toxicol. 2019;132: 110692. DOI: https://doi.org/10.1016/j.fct.2019.110692

Tennant D, Vlachou A. Potential consumer exposures to low/no calorie sweeteners: a refined assessment based upon market intelligence on use frequency, and consideration of niche applications. Food Addit Contam Part A. 2019;36(8): 1173-1183. DOI: https://doi.org/10.1080/19440049.2019.1619942

Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol. .2016;14(3): 163–176. DOI: https://doi.org/10.1038/nrmicro.2015.21

Pappas P, Lionakis M, Arendrup M, Ostrosky-Zeichner L, Kullberg B. Invasive candidiasis. Nat Rev Dis Primers.2018; 4(1): 18026 DOI: https://doi.org/10.1038/nrdp.2018.26

Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care–associated infections in U.S. hospitals. N Engl J Med 2018; 379:1732-1744. DOI: https://doi.org/10.1056/NEJMoa1801550

Gulati M, Nobile CJ. Candida albicans biofilms: Development, regulation, and molecular mechanisms. Microbes Infect. 2016;18(5): 310–321. DOI: https://doi.org/10.1016/j.micinf.2016.01.002

Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single- and multi-species candida albicans biofilms. Nat Rev Microbiol. 2017;16(1):19–31. DOI: https://doi.org/10.1038/nrmicro.2017.107

Alim D, Sircaik S, Panwar S. The Significance of Lipids to Biofilm Formation in Candida albicans: An Emerging Perspective. J. Fungi 2018, 4(4):140. DOI: https://doi.org/10.3390/jof4040140

Gonzalez-Lara MF, Ostrosky-Zeichner L. Invasive candidiasis. Semin Respir Crit Care Med 2020; 41(01): 003-012. DOI: https://doi.org/10.1055/s-0040-1701215

Zawrotniak M, Wojtalik K, Rapala-Kozik M. Farnesol, a quorum-sensing molecule of candida albicans triggers the release of neutrophil extracellular traps. Cells.2019; 8(12):1611. DOI: https://doi.org/10.3390/cells8121611

Tenovuo J .Human saliva chlinical chimistry and microbiology. 2nd ed. Editors Thylstrup A and Fejerskov O. Pp. 2021;17-43, chapter 2. Munksgaard, Copenhagen, Denmark. DOI: https://doi.org/10.1201/9781003210399

Richardson P, Harborne J. Phytochemical Methods. Brittonia.1985; 37(3): 309. DOI: https://doi.org/10.2307/2806080

Wormser GP, Stratton C. Manual of Clinical Microbiology, 9th edition edited by Patrick R. Murray, Ellen Jo Baron, James H. Jorgensen, Marie Louise Landry, and Michael A. Pfaller Washington, DC: ASM press, 2007 2488 pp., illustrated. $209.95 (hardcover). Clin Infect Dis..2008;46(1): 153–153. DOI: https://doi.org/10.1086/524076

AL-Mizraqchi A. Adherence of mutans streptococci on the teeth surfaces: microbiological and biochemical studies Ph. D. thesis, university of Al-Mustansiryia, 1998.

Peres MA, Macpherson LM, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. Oral diseases: a global public health challenge. The Lancet. 2019;394(10194):249-60. DOI: https://doi.org/10.1016/S0140-6736(19)31146-8

Naseri Salahshour V, Abredari H, Sajadi M, Sabzaligol M, Karimy M. The Effect of Oral Health Promotion Program on Early Dental Decay in Students: A Cluster Randomized Controlled Trial. J Caring Sci. 2019;8(2): 105-110. DOI: https://doi.org/10.15171/jcs.2019.015

Janakiram C, Venkitachalam R, Fontelo P, Iafolla T, Dye B. Effectiveness of herbal oral care products in reducing dental plaque & gingivitis – a systematic review and meta-analysis. BMC Complement Med Ther.2020;20(1): 43. DOI: https://doi.org/10.1186/s12906-020-2812-1

Tsui C, Kong E, Jabra-Rizk M. Pathogenesis of Candida albicans biofilm. Pathog Dis. 2016;74(4):ftw018. DOI: https://doi.org/10.1093/femspd/ftw018

Moo C, Osman M, Yang S, Yap W, Ismail S, Lim S. et al. Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing.Klebsiella.pneumoniae. Sci Rep.2021;11(1): 20824. DOI: https://doi.org/10.1038/s41598-021-00249-y

Puig CG, Reigosa MJ, Valentão P, Andrade PB, Pedrol N. Unravelling the bioherbicide potential of eucalyptus globulus labill: Biochemistry and effects of its aqueous extract. PLOS ONE.2018;13(2). DOI: https://doi.org/10.1371/journal.pone.0192872

Korir M, Wachira F, Wanyoko J, Ngure R, Khalid R. The fortification of tea with sweeteners and milk and its effect on in vitro antioxidant potential of tea product and glutathione levels in an animal model. Food Chem. 2014;145:145-153. DOI: https://doi.org/10.1016/j.foodchem.2013.08.016

Shalaby E, Shanab MG. Suggested mechanism for the effect of sweeteners on radical scavenging activity of phenolic compounds in black and green tea. Front Life Sci. 2016;9(4):241-251. DOI: https://doi.org/10.1080/21553769.2016.1233909

Dev A, Rösler A, Schlaad H. Limonene as a renewable unsaturated hydrocarbon solvent for living anionic polymerization of β-myrcene. Poly Chem. 2021;12(21): 3084–3087. DOI: https://doi.org/10.1039/D1PY00570G

Campos J, Scherrmann M, Berteina-Raboin S. Eucalyptol: a new solvent for the synthesis of heterocycles containing oxygen, sulfur and nitrogen. Green Chem. 2019;21(6):1531-1539. DOI: https://doi.org/10.1039/C8GC04016H

Galan D, Ezeudu N, Garcia J, Geronimo C, Berry N, Malcolm B. Eucalyptol (1,8-cineole): an underutilized ally in respiratory disorders? J. Essent. Oil Res. 2020;32(2), 103-110. DOI: https://doi.org/10.1080/10412905.2020.1716867

Abdul Kareem MW, Al Dhaher ZA. Evaluation of The Antifungal Activity of Nasturtium officinale (watercress) Oil with Calcium Hydroxide against Candida Albicans Isolated from Root Canal. J. Baghdad Coll. Dent. 2021;33(4), 1–5. DOI: https://doi.org/10.26477/jbcd.v33i4.3012

Aldhaher ZA. Antimicrobial activity of different types of mouthwashes against Streptococcus mutans, Staphylococcus aureus and Candida albicans (In vitro study). J. Baghdad Coll. Dent.. 2013;25(2), 185–191. DOI: https://doi.org/10.12816/0014954

Similar Articles

You may also start an advanced similarity search for this article.