Evaluation of The Antifungal Activity of Nasturtium officinale (watercress) Oil with Calcium Hydroxide against Candida Albicans Isolated from Root Canal
Main Article Content
Abstract
Materials and Methods: Candida albicans was isolated from patients with necrotic root canal or failed root canal treatment. The sensitivity of Candida albicans to different concentrations of watercress oil extract was determined by using the agar well diffusion method in comparison with calcium hydroxide paste. The agar plate method was used to determine the minimum fungicidal concentration (MFC) of the tested oil against the fungus. The combination of the oil extract of Nasturtium officinale with calcium hydroxide was evaluated and compared to calcium hydroxide paste with iodoform by using the agar well diffusion method.
Results: The oil extract exhibited antifungal activity against Candida albicans, this activity was found to be increased as the concentration of extract increased. The tested combination of watercress oil extract with calcium hydroxide revealed larger inhibition zones than the ones formed by each tested agent individually.
Conclusion: The oil extract of Nasturtium officinale is active against Candida albicans suggesting its potential to be used as an intracanal medicament alone or in combination with calcium hydroxide.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licenses and Copyright
The following policy applies in The Journal of Baghdad College of Dentistry (JBCD):
# JBCD applies the Creative Commons Attribution (CC BY) license to articles and other works we publish. If you submit your paper for publication by JBCD, you agree to have the CC BY license applied to your work. Under this Open Access license, you as the author agree that anyone can reuse your article in whole or part for any purpose, for free, even for commercial purposes. Anyone may copy, distribute, or reuse the content as long as the author and original source are properly cited. This facilitates freedom in re-use and also ensures that JBCD content can be mined without barriers for the needs of research.
# If your manuscript contains content such as photos, images, figures, tables, audio files, videos, etc., that you or your co-authors do not own, we will require you to provide us with proof that the owner of that content (a) has given you written permission to use it, and (b) has approved of the CC BY license being applied to their content. We provide a form you can use to ask for and obtain permission from the owner. If you do not have owner permission, we will ask you to remove that content and/or replace it with other content that you own or have such permission to use.Don't assume that you can use any content you find on the Internet, or that the content is fair game just because it isn't clear who the owner is or what license applies.
# Many authors assume that if they previously published a paper through another publisher, they own the rights to that content and they can freely use that content in their paper, but that’s not necessarily the case, it depends on the license that covers the other paper. Some publishers allow free and unrestricted re-use of article content they own, such as under the CC BY license. Other publishers use licenses that allow re-use only if the same license is applied by the person or publisher re-using the content. If the paper was published under a CC BY license or another license that allows free and unrestricted use, you may use the content in your JBCD paper provided that you give proper attribution, as explained above.If the content was published under a more restrictive license, you must ascertain what rights you have under that license. At a minimum, review the license to make sure you can use the content. Contact that JBCD if you have any questions about the license. If the license does not permit you to use the content in a paper that will be covered by an unrestricted license, you must obtain written permission from the publisher to use the content in your JBCD paper. Please do not include any content in your JBCD paper which you do not have rights to use, and always give proper attribution.
# If any relevant accompanying data is submitted to repositories with stated licensing policies, the policies should not be more restrictive than CC BY.
# JBCD reserves the right to remove any photos, captures, images, figures, tables, illustrations, audio and video files, and the like, from any paper, whether before or after publication, if we have reason to believe that the content was included in your paper without permission from the owner of the content.
How to Cite
Publication Dates
References
Urban, K., Donnermeyer, D., Schäfer, E., et al. Canal cleanliness using different irrigation activation systems: a SEM evaluation. Clin. Oral Investig. 2017; 21(9), 2681-2687. DOI: https://doi.org/10.1007/s00784-017-2070-x
Prada, I., Micó-Muñoz, P., Giner-Lluesma, T., et al, A. Influence of microbiology on endodontic failure. Literature review. Med Oral Patol Oral Cir Bucal. 2019; 24(3), e364. DOI: https://doi.org/10.4317/medoral.22907
Colaco, A.S. Extreme resistance of Enterococcus faecalis and its role in endodontic treatment failure, Prog Med Sci. 2018;2,1. DOI: https://doi.org/10.47363/PMS/2018(2)109
Ashraf, H., Samiee, M., Eslami, G., et al. Presence of Candida albicans in root canal system of teeth requiring endodontic retreatment with and without periapical lesions. Iran. Endod. J. 2007;2(1), 24.
Tabassum, S. and Khan, FR. Failure of endodontic treatment: The usual suspects. Eur J Dent. 2016;10:144-7. DOI: https://doi.org/10.4103/1305-7456.175682
Murray, PE., Farber, RM., Namerow, KN., et al. Evaluation of Morinda citrifolia as an endodontic irrigant. J. Endod.. 2008; 34(1), 66-70. DOI: https://doi.org/10.1016/j.joen.2007.09.016
Athanassiadis, B., Abbott, PV., Walsh, LJ. The use of calcium hydroxide, antibiotics and biocides as antimicrobial medicaments in endodontics. Aust. Dent. J. 2007; 52, S64-S82. DOI: https://doi.org/10.1111/j.1834-7819.2007.tb00527.x
Gopikrishna, AV., Kandaswamy, D.J eyavel, RK. Comparative evaluation of the antimicrobial efficacy of five endodontic root canal sealers against Enterococcusfaecalis and Candida albicans. J Conserv Dent. 2006;9:2–12. DOI: https://doi.org/10.4103/0972-0707.41303
Persoon, IF., Buijs, MJ., Özok, AR., et al. The mycobiome of root canal infections is correlated to the bacteriome. Clin. Oral Investig. 2017; 21(5), 1871-1881. DOI: https://doi.org/10.1007/s00784-016-1980-3
Chaudhary, S., Hisham, H., Doha, M. A review on phytochemical and pharmacological potential of watercress plant. Asian J. Pharm. Clin. Res. 2018; 11.12: 102-107. DOI: https://doi.org/10.22159/ajpcr.2018.v11i12.29422
Mahdavi, S., Kheyrollahi, M., Sheikhloei, H., et al. Antibacterial and Antioxidant Activities of Essential Oil on Food Borne Bacteria. Open Microbiol. J. 2019; 13(1). DOI: https://doi.org/10.2174/1874285801913010081
Fouad AF. Endodontic Microbiology 1st edition: culture based analysis of endodontic infection by Gunnar dohlen, P 40-65. Wiley; 2009.
Al-Hyali, NA. Inhibition of bacterial growth around gutta percha cones by different antimicrobial solutions using antibiotic sensitivity test (An in vitro study). JBCD. 2013; 25(4), 26-32. DOI: https://doi.org/10.12816/0015060
Skucaite, N., Peciuliene, V., Vitkauskiene, A., et al. Susceptibility of endodontic pathogens to antibiotics in patients with symptomatic apical periodontitis. J. Endod. 2010; 36(10), 1611-1616. DOI: https://doi.org/10.1016/j.joen.2010.04.009
Al-Mizrakchi, A. Adherence of mutans Streptococci on teeth surfaces: microbiological and biochemical studies. Diss. PhD Thesis, 1998.
Arora, S., Saquib, SA., Algarni, YA., et al. Synergistic Effect of Plant Extracts on Endodontic Pathogens Isolated from Teeth with Root Canal Treatment Failure: An In Vitro Study. Antibiotics. 2021; 10(5), 552. DOI: https://doi.org/10.3390/antibiotics10050552
Chouhan, S., Sharma, K., Guleria, S. Antimicrobial activity of some essential oils—present status and future perspectives. Medicines. 2017;4(3), 58. DOI: https://doi.org/10.3390/medicines4030058
Bhalodia, NR., Shukla, VJ. Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethnomedicinal plant. J. Adv. Pharm. Technol. Res. 2011; 2(2), 104. DOI: https://doi.org/10.4103/2231-4040.82956
Weli, TA., Mohammed, A. Effect of ginger extract on Mutans streptococci and candida albicans in comparison to chlorhexidine gluconate. J. Baghdad Coll. Dent. 2013; 25(2), 179-184. DOI: https://doi.org/10.12816/0014953
Cushnie, TT., Lamb, AJ. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005; 26(5), 343-356. DOI: https://doi.org/10.1016/j.ijantimicag.2005.09.002
Scalbert, A. Antimicrobial properties of tannins. Phytochemistry.1991; 30(12), 3875-3883. DOI: https://doi.org/10.1016/0031-9422(91)83426-L
Nikan, J., Khavari, H. In vitro anti-fungal activity of watercress (Nasturtium officinale) extract against Fusarium solani, the causal agent of potato dry rot. 2014.
Sadeghi, B. Synthesis of silver nanoparticles using leaves aqueous extract of Nasturtium Officinale (NO) and its antibacterial activity. Int. J. Med. Microbiol. 2014; 4(2), 428-434.
Khan, H., Jan, SA., Javed, M., et al. Nutritional composition, antioxidant and antimicrobial activities of selected wild edible plants. J. food biochem. 2016; 40(1), 61-70. DOI: https://doi.org/10.1111/jfbc.12189