Evaluation of titanium dioxide and tantalum pentoxide nanoparticles for coating NiTi archwires in orthodontics: An in vitro study

Main Article Content

Abeer B Mahmood
https://orcid.org/0000-0001-9429-0202
Akram F Alhuwaizi
https://orcid.org/0000-0002-6270-763X
Mohammed K Khalaf
https://orcid.org/0000-0001-5688-6304
Abbas R Zaher
https://orcid.org/0000-0003-0567-2060

Abstract

Background: This study aims to enhance the biocompatibility of Nickel–Titanium (NiTi) alloy by developing a new coating using titanium dioxide (TiO2) and titanium pentoxide (Ta2O5) through direct current (DC) reactive sputtering technology. Materials and methods: Two distinct coating materials, namely, TiO2 and Ta2O5, were used to fabricate NiTi orthodontic archwires with improved surface properties. TiO2 nanoparticles, with thickness ranging from 21.90 nm to 31.93 nm, were deposited onto NiTi alloy substrates through DC reactive sputtering deposition under different power conditions. Results: X-ray diffraction and field emission scanning electron microscopy validated the uniformity and morphology of the coatings. Immersion tests in simulated body fluid (SBF) revealed significant hydroxyapatite layer growth on TiO2-coated NiTi, especially at a sputtering power of 240 W. Reduced nickel ion release was observed on TiO2 nanoparticles with a thickness of 21.90 nm at 50 W sputtering power compared with 31.93 nm-thick nanoparticles at 240 W. Ta2O5 thin films were deposited on NiTi substrates through DC magnetron reactive sputtering at ~100 °C with a deposition power of 50 W. Structural and morphological analyses through optical microscopy and X-ray diffraction, atomic force microscopy, and scanning electron microscopy revealed the homogeneity and low roughness of the coatings. Biocompatibility assessments in artificial saliva and SBF solutions established that Ta2O5-coated NiTi alloys exhibited superior electrochemical behavior, enhanced corrosion resistance, and diminished Ni ion release compared with uncoated specimens. Conclusion: TiO2 and Ta2O5 coatings not only improved the biocompatibility of NiTi orthodontic archwires but also presented a promising path for advanced biomedical applications. These coatings have potential in improving the cellular behavior and performance of NiTi-based orthodontic devices.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Mahmood AB, Alhuwaizi AF, Khalaf MK, Zaher AR. Evaluation of titanium dioxide and tantalum pentoxide nanoparticles for coating NiTi archwires in orthodontics: An in vitro study. J Bagh Coll Dent [Internet]. 2024 Sep. 15 [cited 2024 Sep. 19];36(3):50-6. Available from: https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/3740
Section
Research Articles

How to Cite

1.
Mahmood AB, Alhuwaizi AF, Khalaf MK, Zaher AR. Evaluation of titanium dioxide and tantalum pentoxide nanoparticles for coating NiTi archwires in orthodontics: An in vitro study. J Bagh Coll Dent [Internet]. 2024 Sep. 15 [cited 2024 Sep. 19];36(3):50-6. Available from: https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/3740

Publication Dates

References

AlQuraini N, Shah R, Cunningham SJ. Perceptions of outcomes of orthodontic treatment in adolescent patients: a qualitative study. Eur J Orthod. 2019;41(3):294–300. DOI: https://doi.org/10.1093/ejo/cjy071

Katada H. Esthetic Improvement through Orthodontic Treatment Involving Extraction: Use of Orthodontic Anchor Screws. Bull Tokyo Dent Coll. 2018;60(2):115–29. DOI: https://doi.org/10.2209/tdcpublication.2018-0041

Al-Khatieeb MM, Mohammed SA, Al-Attar AM. Evaluation of a New Orthodontic Bonding System: Beauty Ortho Bond. J Bagh Coll Dent. 2015;27(1):175–81. DOI: https://doi.org/10.12816/0015284

Abid M, Alhuwaizi A, Al-Attar A. Do orthodontists aim to decrease the duration of fixed appliance treatment? J Orthod Sci. 2021;10(1):6. DOI: https://doi.org/10.4103/jos.JOS_36_20

Saloom HF, Papageorgiou SN, Carpenter GH, Cobourne MT. Impact of Obesity on Orthodontic Tooth Movement in Adolescents: A Prospective Clinical Cohort Study. J Dent Res. 2017;96(5):547–54. DOI: https://doi.org/10.1177/0022034516688448

Kareem YM, Hamad TI, AL-Rawas M. Evaluating the effect of barium titanate nanofiller addition on the thermal conductivity and physio-mechanical properties of maxillofacial silicone. J Bagh Coll Dent. 2024;36(2):20–33. DOI: https://doi.org/10.26477/jbcd.v36i2.3674

Alkhawaja HAA, Al Haidar AHMJ. Effect of a novel coating material on the microleakage of glass hybrid restoration in primary teeth – An in vitro study. J Bagh Coll Dent. 2023;35(1):20–6. DOI: https://doi.org/10.26477/jbcd.v35i1.3311

Castro SM, Ponces MJ, Lopes JD, Vasconcelos M, Pollmann MCF. Orthodontic wires and its corrosion—The specific case of stainless steel and beta-titanium. J Dent Sci. 2015;10(1):1–7. DOI: https://doi.org/10.1016/j.jds.2014.07.002

Sifakakis I, Eliades T. Adverse reactions to orthodontic materials. Aust Dent J. 2017;62(S1):20–8. DOI: https://doi.org/10.1111/adj.12473

Ratner BD. A pore way to heal and regenerate: 21st century thinking on biocompatibility. Regen Biomater. 2016;3(2):107–10. DOI: https://doi.org/10.1093/rb/rbw006

Pilar Shetty B, Subramanya R, Reddy S, Shetty V. An overview on biocompatibility and failure analysis of acrylonitrile butadiene steryene based laryngoscope. Suranaree J Sci Technol. 2023;30(1):010192(1-9). DOI: https://doi.org/10.55766/sujst-2023-01-e01876

Li Q, Zeng Y, Tang X. The applications and research progresses of nickel–titanium shape memory alloy in reconstructive surgery. Australas Phys Eng Sci Med. 2010;33(2):129–36. DOI: https://doi.org/10.1007/s13246-010-0022-8

Sharma N, Jangra K, Raj T. Applications of Nickel-Titanium Alloy. J Eng Technol. 2015;5(1):1. DOI: https://doi.org/10.4103/0976-8580.149472

Singh A, Sharma S, Batra P, Arora N, Kannan S. Effects of different storage temperatures on the properties of nonlatex orthodontic modules. Indian J Dent Res. 2022;33(4):350. DOI: https://doi.org/10.4103/ijdr.ijdr_453_22

Tan L, Crone WC. Surface characterization of NiTi modified by plasma source ion implantation. Acta Mater. 2002;50(18):4449–60. DOI: https://doi.org/10.1016/S1359-6454(02)00251-3

Nazarahari A, Canadinc D. Prediction of the NiTi shape memory alloy composition with the best corrosion resistance for dental applications utilizing artificial intelligence. Mater Chem Phys. 2021;258:123974. DOI: https://doi.org/10.1016/j.matchemphys.2020.123974

Quazi MM, Ishak M, Fazal MA, Arslan A, Rubaiee S, Aiman MH, et al. A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications. Crit Rev Solid State Mater Sci. 2020;46(2):109–51. DOI: https://doi.org/10.1080/10408436.2019.1708701

Nsaif YA, Mahmood AB. Effect of Fluoride Agent on the Load Deflection of Rhodium-Coated Arch Wires; An In-Vitro Study. Indian J Public Health Res Dev. 2019;10(2):823. DOI: https://doi.org/10.5958/0976-5506.2019.00397.8

Mahmood AB. Coated stainless steel archwires’ discoloration measured by computerized system (An in-vitro study). J Bagh Coll Dent. 2020;32(4):1–4. DOI: https://doi.org/10.26477/jbcd.v32i4.2911

Mohsin SK. An Evaluation of Corrosion Pits in Esthetic Coated Stainless Steel Orthodontic Archwires in Dry and Wet Environment at Different Intervals: An in Vitro Study. J Bagh Coll Dent. 2016;28(1):153–7. DOI: https://doi.org/10.12816/0024726

Muayad NS, Ghaib NH. The Effect of Artificial Saliva on the Surface Roughness of Different Esthetic Archwires: An in Vitro Study. J Bagh Coll Dent. 2017;29(3):106–12. DOI: https://doi.org/10.12816/0041190

Gao W, Li Z. ZnO thin films produced by magnetron sputtering. Ceram Int. 2004;30(7):1155–9. DOI: https://doi.org/10.1016/j.ceramint.2003.12.197

Xu Y, Li G, Li G, Gao F, Xia Y. Effect of bias voltage on the growth of super-hard (AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering. Appl Surf Sci. 2021;564:150417. DOI: https://doi.org/10.1016/j.apsusc.2021.150417

Chan KY, Teo BS. Effect of Ar pressure on grain size of magnetron sputter-deposited Cu thin films. IET Sci Meas Technol. 2007;1(2):87–90. DOI: https://doi.org/10.1049/iet-smt:20060110

Zhou Y, Zheng HF, Zhao G, Li M, Liu BT. Influence of Sputtering Power on Structural and Optical Properties of ZnO Films Fabricated by RF Magnetron Sputtering. Adv Mater Res. 2014;1053:325–31. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1053.325

Muniz FTL, Miranda MAR, Morilla dos Santos C, Sasaki JM. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr A Found Adv. 2016;72(3):385–90. DOI: https://doi.org/10.1107/S205327331600365X

Cougnon F, Depla D. The Seebeck Coefficient of Sputter Deposited Metallic Thin Films: The Role of Process Conditions. Coatings. 2019;9(5):299. DOI: https://doi.org/10.3390/coatings9050299

Panjan P, Drnovšek A, Gselman P, Čekada M, Panjan M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings. 2020;10(5):447. DOI: https://doi.org/10.3390/coatings10050447

Ulkareem MA, Noori FTM, Khalaf MK. Corrosion resistance of Ti6Al4V alloy by Radio Frequency Technique used for Coating Deposition of multilayer (HA/TiN/Ti6Al4V-substrate) for Optimization power. IOP Conf Ser Mater Sci Eng. 2020;757(1):012047. DOI: https://doi.org/10.1088/1757-899X/757/1/012047

Amor SB, Baud G, Besse JP, Jacquet M. Structural and optical properties of sputtered Titania films. Mater Sci Eng B. 1997;47(2):110–8. DOI: https://doi.org/10.1016/S0921-5107(97)00027-5

Ohya S, Chiaro B, Megrant A, Neill C, Barends R, Chen Y, et al. Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators. Supercond Sci Technol. 2013;27(1):015009. DOI: https://doi.org/10.1088/0953-2048/27/1/015009

Hrbek J. Sputtering of metals in the presence of reactive gases. Thin Solid Films. 1977;42(2):185–191. DOI: https://doi.org/10.1016/0040-6090(77)90416-3

Soltabayev B, Yergaliuly G, Ajjaq A, Beldeubayev A, Acar S, Bakenov Z, et al. Quick NO Gas Sensing by Ti-Doped Flower–Rod-like ZnO Structures Synthesized by the SILAR Method. ACS Appl Mater Interfaces. 2022;14(36):41555–70. DOI: https://doi.org/10.1021/acsami.2c10055

Torres-Costa V, Martín-Palma RJ. Optical properties of porous silicon materials. Porous Silicon Biomed Appl. 2021;183–222. DOI: https://doi.org/10.1016/B978-0-12-821677-4.00008-2

Kumar Rajak D, Pagar DD, Menezes PL, Eyvazian A. Friction-based welding processes: friction welding and friction stir welding. J Adhes Sci Technol. 2020;34(24):2613–37. DOI: https://doi.org/10.1080/01694243.2020.1780716

Bae D, Gho J, Shin M, Kwon S. Effect of zinc addition on properties of cadmium sulfide layer and performance of Cu(In,Ga)Se2 solar cell. Thin Solid Films. 2013;535:162–165. DOI: https://doi.org/10.1016/j.tsf.2012.11.077

Welzel U, Ligot J, Lamparter P, Vermeulen AC, Mittemeijer EJ. Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction. J Appl Crystallogr. 2005;38(1):1–29. DOI: https://doi.org/10.1107/S0021889804029516

Rauuf AF, Aadim KA. Effect of Annealing Times on the Structural and Optical Properties of PbO Thin Films Prepared by D.C Sputtering. Iraqi J Sci. 2023;2877–88. DOI: https://doi.org/10.24996/ijs.2023.64.6.18

Lee JH, Jang HL, Lee KM, Baek HR, Jin K, Hong KS, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater. 2013;9(4):6177–87. DOI: https://doi.org/10.1016/j.actbio.2012.11.030

Al-Hasan R, Al-Taee L. Interfacial Bond Strength and Morphology of Sound and Caries-affected Dentin Surfaces Bonded to Two Resin-modified Glass Ionomer Cements. Oper Dent. 2022;47(4):E188–E196.. DOI: https://doi.org/10.2341/21-048-L

Al-Oubidy EA, Kadhim FJ. Photocatalytic activity of anatase titanium dioxide nanostructures prepared by reactive magnetron sputtering technique. Opt Quantum Electron. 2019;51(1). DOI: https://doi.org/10.1007/s11082-018-1738-z

Firouzabadi SS, Naderi M, Dehghani K, Mahboubi F. Effect of nitrogen flow ratio on nano-mechanical properties of tantalum nitride thin film. J Alloys Compd. 2017;719:63–70. DOI: https://doi.org/10.1016/j.jallcom.2017.05.159

Durante O, Di Giorgio C, Granata V, Neilson J, Fittipaldi R, Vecchione A, et al. Emergence and Evolution of Crystallization in TiO2 Thin Films: A Structural and Morphological Study. Nanomaterials. 2021;11(6):1409. DOI: https://doi.org/10.3390/nano11061409

Taratuta A, Lisoń-Kubica J, Paszenda Z, Szewczenko J, Kazek-Kęsik A, Opilski Z, et al. Influence of passive layer fabrication method on physicochemical and antimicrobial properties of the Ta2O5 layer on NiTi alloy. Vacuum. 2023;214:112187. DOI: https://doi.org/10.1016/j.vacuum.2023.112187

Guillén C, Herrero J. TiO2 coatings obtained by reactive sputtering at room temperature: Physical properties as a function of the sputtering pressure and film thickness. Thin Solid Films. 2017;636:193–199. DOI: https://doi.org/10.1016/j.tsf.2017.05.048

Ramos-Corella KJ, Sotelo-Lerma M, Gil-Salido AA, Rubio-Pino JL, Auciello O, Quevedo-López MA. Controlling crystalline phase of TiO2 thin films to evaluate its biocompatibility. Mater Technol. 2019;34(8):455–62. DOI: https://doi.org/10.1080/10667857.2019.1576821

Gupta BK, Kulshrestha S, Agarwal AK. Friction and wear behavior of ion-plated lead–tin coatings. J Vac Sci Technol A. 1987;5(3):358–63. DOI: https://doi.org/10.1116/1.574160

Similar Articles

You may also start an advanced similarity search for this article.